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Abstract—The field of machine learning has seen explosive
growth over the past decade, largely due to increases in tech-
nology and improvements of implementations. As powerful as
machine learning solutions can be, they are still reliant on human
input to select the optimal algorithms and parameters. Clustering
algorithms, in particular, are typically chosen by trial and error,
as researchers will select a number of algorithms and choose
whichever provides the most desirable result.

This study will use a process called meta-learning to evaluate
and analyze datasets and extract a series of meta-features.
These meta-features can then be used to intelligently recommend
an optimal clustering algorithm without the cost of having
to manually run the algorithm. To accomplish this, we will
experiment using 135 datasets and determine their expected
outcomes using only their meta-features. The outcomes being
optimized are performance (accuracy) and runtime.

Results are then ranked separately for performance and
runtime and we can determine how accurately the learning model
was able to choose the optimal algorithm for each objective.

With respect to runtime, we are able to predict the top-
performing algorithm 71.1% of the time, one of the top two
algorithms 89.6% of the time, and an algorithm in the top three
93.3% of the time. Performance is correctly predicted in the top
two 50.4% of the time and in the top three at a rate of 63.7%.

Index Terms—clustering, meta-learning, algorithm perfor-
mance

I. INTRODUCTION

Machine learning is a very expensive process, both from a
human and machine perspective. From a human perspective,
a great deal of time is required to find, test, and tweak
algorithms. For instance, testing just four algorithms, each with
three customizable parameters, using any of three different
values for each parameter, results in thirty-six distinct tests to
run. From a machine perspective, a huge amount of processing
power or memory consumption is required for each run. These
costs grow exponentially as the number of parameters grows.
If we can automate the process of algorithm selection, or even
help narrow down the selection, we can prevent a great deal
of unnecessary work.

Cluster analysis provides a powerful way of automating
the grouping and classification of different sets of objects.
There are a large number of clustering algorithms with an
even larger number of customizable parameters. Selection of
an optimal algorithm is often determined by factors such as
accuracy, speed, resources required, or other metrics. However,

the process of testing different algorithms is often slow and
largely trial-and-error based. The goal of algorithm selection
is to choose a clustering algorithm based upon the structural
properties of the problem [1]. If the process of algorithm
recommendation could be automated based on the feature set
of the problem, it would become much more efficient.

There are numerous ways to determine which algorithm is
the most desirable. The most common metric is accuracy, also
referred to as performance. We can choose to optimize for
performance or for runtime. Runtime is important for the many
researchers who may not have access to large GPU clusters.
Sometimes a wise trade-off of a method’s speed and efficiency
may be more important than its accuracy. Such cases might
involve privacy concerns, high latency, or network connectivity
issues and are best resolved by training being done locally on
the device itself [2]. Other examples could include modeling
real-time traffic flows, short-term stock market pricing trends,
medical symptom evaluation, and real-time marketing/adver-
tising. While meta-learning and the creation of meta-features
itself will carry a cost, that cost can be neglected if it is
amortized enough to result in a net positive across the entire
application [3].

Meta-learning is the process of analyzing past results to
choose future settings dynamically. Its contrast is base-learning
where the settings are fixed [4]. By leveraging predefined
meta-features and their performance results, we can select
algorithms that we know are likely to perform better than
others. In this case, the algorithm being chosen is the setting
being adjusted. Since we expect the cost of meta-learning to
be cheaper than the cost of training, the result is an increase in
efficiency. We can also transfer our meta-knowledge to other
datasets of similar types.

This paper proposes the use of metadata — data that
describes other data — to automate the process of algorithm
recommendation. In this case, the metadata will describe the
characteristics of the problem; specifically, various metrics
of a dataset. A series of meta-features will be defined and
their values calculated for a given number of datasets. We
then apply eight unique clustering algorithms to these datasets
and measure their performance (accuracy) and runtime. These
results will then be fed into neural networks to predict the
performance and runtime for other datasets when using the



same eight algorithms. A recommendation can then be made
for which algorithm would optimize performance and which
would optimize runtime, without the cost of having to run the
algorithms.

If we measure success as predicting a result in the top two,
our system has a success rate of 50.4% for performance and
89.6% for runtime. Using top three as a benchmark, success
rates are 63.7% for performance and 93.3% for runtime.

The remainder of the paper is distributed as follows: Section
II discusses related work and earlier studies, Section III details
the methodology used in our experiment, Section IV visualizes
and discusses the results, and Section V summarizes the
benefits and any future work that could be done.

II. RELATED WORK

We begin with an overview of AutoML, clustering and
its various implementations, and how to apply AutoML to
complete clustering tasks. We also present a brief overview
of deep learning and neural networks.

A. AutoML

The full machine learning pipeline includes data prepara-
tion, feature engineering, model generation, and model evalu-
ation [5]. Performing all these steps manually can take a great
deal of time and expertise, so instead we leverage existing
tools to improve both the speed and accuracy of the process,
resulting in much greater efficiency [6]. Additionally, this
opens up the field of ML to those without ML domain specific
knowledge [7]. Attempts have even been made to crowdsource
and benchmark previous ML studies to use as a reference for
future work [8].

According to the no-free-lunch theorem [9] it is impossible
for there to be a single ML pipeline that is optimal for every
application. It follows that for each new problem, a new
pipeline would need to be constructed, which is a tedious and
time-consuming process. The goal of AutoML is to automate
these processes, such as data cleaning, feature engineering, or
hyperparameter selection [10].

Most classes of problems will have some structure that, if
known, can be exploitable. To justify its use, that structure
must be known and be directly reflected in the choice of
algorithm [9]. In this paper, the structure that we aim to exploit
is defined by the metafeatures of each dataset.

Meta-learning aims to improve average performance on new
tasks by utilizing experience in past tasks [11], [12] and has
been used to help fill incomplete models in space missions that
have highly variable or even completely unknown parameters
[13]. It has also been used to augment zero-shot learning
(ZSL), the process of classifying unseen class examples at
runtime [14]–[16].

B. Clustering

Clustering is the process of separating groups of objects in
such a way that objects within a group are more similar to
each other than objects outside the group, or cluster. It is not
a one-shot process and usually requires a series of trials and

repetitions [17]. There are many methods that can accomplish
this, known as clustering algorithms. Each algorithm is usually
classified by how it accomplishes the clustering [18]. Some
families of algorithms include:

a) Distribution Models: Data points are modeled based
on the probability that they fit into a particular cluster. The
number of clusters used is fixed and predefined. Each item is
assigned to the cluster to which it has the highest probability
of belonging [19]. Gaussian Mixture Models are examples of
distributed clustering algorithms. Figure 1(a) shows a visual-
ization of a distribution model.

b) Connectivity/Hierarchical Models: This approach can
either be top-down (divisive) or bottom-up (agglomerative). In
a divisive approach, all observations begin in a single cluster
and divisions form as the data is analyzed. An agglomerative
approach begins with each observation as its own cluster.
Similar clusters are then merged together until reaching the
specified number of clusters. Clusters are defined based on
distance. The idea is that data points closer to each other have
more in common than those spaced farther apart. The function
used to calculate distance can vary. Figure 1(b) shows Average
Agglomerative Clustering, a connectivity model [20].

c) Centroid Models: Sometimes called partitional mod-
els, a series of centroids are predefined and each observation
is paired with the centroid to which it lies closest. Each
cluster is represented by a single mean vector. A drawback
is that the number of clusters must be specified beforehand.
Also, centroid models are unable to handle noise or deal with
clusters with non-convex shapes [21]. Centroid models include
k-means and fuzzy c-means, as seen in Figure 1(c) [22].

d) Density Models: The data space is scanned for areas
of varying density and partitions are made where the density
is lower, signifying the edges of a cluster. The number of
clusters is not pre-defined. Density-based spatial clustering of
applications with noise (DBSCAN) and Mean Shift are two
well-known density-based algorithms [23]. Figure 1(d) shows
a visualization of a density model.

Though there are other families of algorithms, these four
cover most of the algorithms used in this work.

C. AutoML Applied to Clustering

Running clustering algorithms and extracting meaningful
results involves more than running an algorithm — an entire
process is needed. Our goal is to find a way to optimize
the process, by optimizing one or more specific steps in it.
There are a number of metrics that can be used to define
“optimal”, such as memory consumption, performance, CPU
use, or runtime. We will focus on performance optimization
and runtime optimization.

1) Performance Optimization: The most common optimiza-
tion goal is for accuracy, usually referred to as performance.
Performance optimization aims to maximize the number of
data points that are assigned to their correct cluster. There are
many metrics that attempt to evaluate this in different ways.
Table I shows ten of these metrics along with the software
used to implement them and their performance objectives.



(a) Visualization of expectation-maximization (EM), a distribu-
tion model, which uses multivariate normal distributions. Each
centroid is marked with a (+).

(b) Visualization of single-linkage clustering, an example of an
agglomerative connectivity model. At each step, two clusters
that have not yet been categorized are combined. Here we
see three primary clusters (red, green, blue) and other smaller
clusters (purple, gold, aqua).

(c) Visualization of k-means clustering, showing cluster vectors
and centroids (+). We can see that clusters can never overlap.

(d) Visualization of the DBSCAN algorithm. Points that are
tightly packed are assumed to be members of the same class.
When the density of the points lessens, we are likely reaching
the cluster’s boundary.

Fig. 1: Visualizations of different approaches for clustering used in this work.

Although clustering is an unsupervised task, performance
is often evaluated incorrectly by using the clustering labels as
the prediction objective. As pointed out by [24], this can lead
to incorrect or misleading results, since labels are intended
for classification tasks, not clustering. By using classification
labels, we focus only on a specific property rather than the
distribution of the entire dataset. For example, there might
be a situation where groups of data with different class
labels overlap. These labels might be better represented as
a single cluster, yet using existing class labels as the ground

truth objective would deem the results incorrect. Conversely,
objects with the same class labels might correspond to multiple
clusters. For these reasons, in this work, all class labels
are dropped from each dataset and we rely solely on these
performance metrics for evaluation. This does provide a slight
disadvantage as class labels are often used as a way to “cheat”
and specify the number of desired clusters for centroid models.
Instead, we leverage a commonly used technique of specifying
that the number of desired clusters be equal to the number of
attributes in the dataset.



TABLE I: Clustering performance metrics used in our exper-
iments, each column shows the package and language used
to implement, the range of outputs, and the optimization
objective.

Index Package Interval Objective
Calinski-Harabasz scikit-learn (Python) [0,∞) max

Silhouette scikit-learn (Python) [−1, 1] max
Dunn fpc (R) [0,∞) max

Pearson Gamma fpc (R) [−1, 1] max
Tau clusterCrit (R) [0,∞) max

Davies-Bouldin clusterCrit (R) [0,∞) min
Xie-Beni clusterCrit (R) [0,∞) min
SD-Scat clusterCrit (R) [0,∞) min
SD-Dis clusterCrit (R) [0,∞) min

Ray-Turi clusterCrit (R) [0,∞) min

The meta-learning approach to clustering algorithm recom-
mendation was used by [25] to optimize for performance.
They limited the number to thirty-two cancer gene expression
datasets and used seven unique algorithms – single linkage,
complete linkage, average linkage, k-means, mixture model
clustering, spectral clustering, and shared nearest neighbors
algorithm. Eight statistical metafeatures were chosen; the six
used here, plus two more. They then run the algorithms
and evaluate the performance by comparing results to the
ground truth classification label. They found that their method
provided a significant advantage over using the default ranking
[25].

The authors in [26] used thirty datasets and ten metafea-
tures. The five algorithms used were K-Means, Single Linkage,
Complete Linkage, Medium Linkage, and a Self-Organizing
Feature Map. Accuracy was again measured by comparing
predictions versus ground truth labels. They found that meta-
learning can “provide a guide for designing experiments and
choosing suitable algorithms for each type of problem based
on its features” [26].

The study done in [27] improved upon earlier attempts by
expanding the number of datasets, algorithms, metafeatures,
and the metrics used to evaluate performance. They also
sought to determine which types of metafeatures, statistical
or distance-based, are the most suitable for a given problem.

2) Runtime Optimization: Since the desirability of clus-
tering algorithms is largely driven by which is the most
accurate, the area of runtime optimization has seen fewer
contributions. Some previous works have been able to leverage
meta-knowledge to predict training time, some by using only
the number of instances and features [28]. There are many real-
world scenarios where an algorithm’s runtime could be more
important than its performance, provided the performance loss
is an amount deemed acceptable. For that reason, this work
will still track performance to ensure that improvements in
runtime aren’t completely at the expense of accuracy.

Certain algorithms, by their nature, are naturally inclined
to run at different speeds than others. In one study involving
bank data, it was determined that hierarchical models take the
most time while k-means and density-based algorithms were
significantly faster [29].

D. Neural Networks and Deep Learning

An Artificial Neural Network (ANN) is a system of con-
nected nodes designed to emulate the human brain. Much like
how a human brain contains billions of neurons connected by
synapses, an ANN is comprised of nodes connected by a series
of weighted edges. An ANN contains an input layer, an output
layer, and a number of hidden layers in between. Each layer is
comprised of a number of nodes and each node transforms an
input into an output via an activation function. Widely-used
activations include step, sigmoid, rectified linear unit (ReLU),
and tanh. The aim of the hidden layers is to transform the input
into some kind of useful output. The input is transformed by
iteratively tweaking the weights of the edges.

As the ANN is iterated over, a matrix multiplication is
performed on each layer based upon the given weights. The
average of the mistakes is tracked, called the loss. After each
iteration, the weights are tweaked by back-propagating through
the network. Changes can then be made to the training model
to find a more desirable result. Adjusting and tweaking an
ANN’s parameters and choosing a suitable classifier is still
more art than science [30].

Two ANNs are used in this work, one to predict runtime and
one to predict performance. The network to predict runtime
has a single output, the expected runtime, while the ANN
for performance will output ten distinct performance metrics.
Both networks will accept an input containing twenty-five
metafeatures and a one-hot encoding representing each of the
eight algorithms.

III. METHODOLOGY AND EXPERIMENTS

Here we describe the processes used in this work, starting
with data pre-processing and feature extraction. This continues
with the training and timing of each algorithm for each dataset
and the recording of results. We then discuss the design of
the ANN, the decisions behind it, and the training and testing
process. Finally, the results are visualized and analyzed. Figure
2 shows a diagram of the entire process.

A. Datasets and Preprocessing

OpenML [31] is a project that provides, among other things,
datasets to use in machine learning projects. We use 135
datasets from OpenML, covering a wide range of categories
including medical, biological, climatic, and social topics. This
library of datasets was mostly compiled and used by the study
in [27], although some additions and removals have been done
for this study.

The process begins with normalizing all values on the
interval [0, 1]. Next, we find and remove any columns that
are computationally or exactly singular to other columns.
Columns are colinear if they are linear combinations of others
(either exact or close). This will cause errors when running
multivariate analysis so all such columns need to be removed.
It is important to note that removing these columns will not
affect the predictive power of our model as we are essentially
just removing duplicate features. Some sets are found to
be computationally singular if they have one or more small



Fig. 2: Overview of the entire process showing feature extraction, fitting, tensor building, training, testing, and output.

values that can be rounded to zero, leading to the assumption
that it is a singular matrix. Since a singular matrix is not
invertible, it would then prevent a number of algorithms in
the MVN package from running. The R package caret is able
to clean any datasets with a high correlation among dependent
variables. About a quarter of our datasets fall into this category.

B. Feature Extraction

The objective of meta-feature characterization is to capture
the identifying characteristics of a dataset and use that infor-
mation to group other similar datasets. This work will rely
primarily on the metafeatures of datasets to make intelligent
recommendations. Therefore, the features chosen and how they
are calculated become extremely important. The authors in
[25] proposed the use of eight statistical metafeatures. The
study in [27] built upon that method, dropping two of the
features for being too subject-specific, as the goal is for this
to generalize over datasets of all types. They also built upon
the work of [26], who proposed the use of distance-based
metafeatures where the Euclidean distance between objects is
used to obtain a measure of dissimilarity.

This work will leverage these previous metrics using six
statistical-based features and nineteen distance-based metrics.
The result will be a twenty-five item vector characterizing each
dataset.

1) Statistical-Based Metafeatures: These are macro-level
observations of a dataset. Here we will quantify information
such as the size of the dataset – both the number of entries
and the number of parameters for each entry – and we will
look at normality, variance, and the overall distribution of the

data. These features will provide a rough indication of the size,
quality, and behavior of each dataset.

1) Number of Entries (NE)
NE = n, where n is the number of entries. This
indicates the size of the dataset.

2) Number of Entries per Attribute (NEA)
NEA = n

p , where n is the number of entries and p is
the number of attributes. This indicates the robustness
of the dataset, or how descriptive it is.

3) Percentage of Missing Values (PMV)
PMV = m

t · 100, where m is the number of missing
entries and t is the total number of entries. This measures
the completeness of the dataset.1

4) Multivariate Normality (MN)
A measure of how close the dataset is to a normal
distribution. This value is computed using R’s MVN
package [32] and Royston’s algorithm.

5) Skewness (SK)
A measure of how far a distribution is pushed left or
right. This measures the dataset’s asymmetry. This value
is computed using R’s MVN package and Mardia’s Test
to compute multivariate skewness.

6) Percentage of Outliers (PO)
PO = o

t · 100, where o is the number of entries that
are labelled as outliers, meaning they are more than two
standard deviations from the mean and t is the total
number of entries. This is a multivariate metric.

1every dataset used in this paper is fully complete so this value will be 0
for all



2) Distance-Based Metafeatures: The goal here is to cal-
culate the pairwise Euclidean distance between entries (rows).
Given a dataset X containing n entries described by p vari-
ables, we use the following formula to calculate the distance,
d, between entries i and j.

d(Xi, Xj) =

√√√√ p∑
c=1

(xi,c − xj,c)2 (1)

We then create a vector of size n(n−1)/2 listing all pairwise
distances:

d = [d1,2, d1,3, d1,4, ..., d2,3, d2,4, ..., dn−1,n] (2)

Min-Max Feature Scaling is then implemented to normalize
the vector on the interval [0, 1]. The resulting vector is labeled
m′ and is used to calculate the nineteen metafeatures shown
in Table II.

TABLE II: Distance-Based Metafeatures and Descriptions.

Metafeature Description
MF1 Mean of m′

MF2 Variance of m′

MF3 Standard deviation of m′

MF4 Skewness of m′

MF5 Kurtosis of m′

MF6 % of values in [0, 0.1]
MF7 % of values in (0.1, 0.2]
MF8 % of values in (0.2, 0.3]
MF9 % of values in (0.3, 0.4]
MF10 % of values in (0.4, 0.5]
MF11 % of values in (0.5, 0.6]
MF12 % of values in (0.6, 0.7]
MF13 % of values in (0.7, 0.8]
MF14 % of values in (0.8, 0.9]
MF15 % of values in (0.9, 1.0]
MF16 % of values with absolute Z-score in [0, 1)
MF17 % of values with absolute Z-score in [1, 2)
MF18 % of values with absolute Z-score in [2, 3)
MF19 % of values with absolute Z-score in [3,∞)

For larger datasets, pairwise distance calculations could
become prohibitively expensive, so these metafeatures are best
suited for smaller to average-size datasets.

C. Recording Algorithm Results

Each dataset is normalized to the interval [0, 1]. A widely-
used method of dealing with an unknown number of clusters
is to set the number of clusters equal to the number of classes
in the dataset. This method is used for algorithms that require
a set number of clusters. Admittedly, this is somewhat of a
shortcoming as selecting the optimal number of clusters is
a problem in itself. Selecting too many clusters can over-
complicate the result while selecting too few clusters can
result in information loss and over-generalization [17]. Eight
algorithms will be run, all from Python’s scikit-learn package,
shown in Table III. Each algorithm will be measured for both
performance and runtime.

TABLE III: Clustering algorithms used and the values of any
customizable parameters. For algorithms needing a set number
of clusters, the number of attributes was used.

Label Algorithm Parameters

AA Average Agglomerative affinity=euclidean,
linkage=average

AP Affinity Propagation max iterations=1000,
convergence iterations=10

BI Birch threshold=0.01,
branching factor=50

GM Gaussian Mixture covariance type=full, n init=5

KM K-Means init=k-means++, n init=20,
max iterations=500

MS Mean Shift quantile=0.2, cluster all=False

OP OPTICS min samples=5,
metric=minkowski

SC Spectral Clustering n init=20, affinity=rbf,
assign labels=kmeans

1) Performance Data: To calculate performance (accu-
racy), we use the ten clustering metrics shown in Table I.
As this is unsupervised, we use internal indices to evaluate
performance, meaning the quality of the clustering structure
uses features already inherent in the dataset. Since each
metric uses unique scales and objectives, these results will
need to be normalized and averaged to ensure that all ten
metrics are weighted equally. The combining and averaging
step is done after all ten results are returned from the neural
network. Metrics with a minimization objective are flipped by
multiplying by −1 to put all metrics on equal footing. Since
the objective is to compare among eight algorithms, the actual
numeric result is irrelevant, as long as it is consistent among
all eight, allowing us to rank relative to one another.

Figure 3 shows the first eight datasets and each of their
ten performance metrics. We can see that, in general, all ten
metrics seem to agree with each other, so taking the average
of all ten should not be an issue. If the graph showed random,
inconsistent results, that would be a concern.

2) Runtime Data: To calculate runtime, a dedicated CPU
(Intel Xeon E5-1603 V3 @ 2.80GHz, 4 cores, 4 threads, 8GB
RAM running Ubuntu 18.04) is used to measure the exact
time it takes to train each algorithm. In order to remove any
unrelated factors, the machine has no network connection and
minimal concurrent processes. Since an algorithm’s runtime
could be influenced by how efficiently a package is imple-
mented, the scikit-learn package for Python is used for all
to ensure consistency. We will do ten runs total and take
the average, while also ensuring the variance in each run is
relatively low. If distinct runtime results vary by a significant
amount, there is likely an external condition that needs to be
addressed.

D. Neural Net Training/Testing

We create two neural networks and use leave-one-out cross
validation (LOOCV). The input for both will be the meta-
features and a one-hot encoding of the desired algorithm. The
output will be the performance predictions for one, and the
runtime prediction for the other.



Fig. 3: The first eight datasets and each of their corresponding
performance metrics.
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There are 1080 input tensors (135 datasets × 8 algorithms),
each with 33 features, shown below in Figure 4. Each time,
the ANN is trained with 134 datasets and tested on the held
out set. Since LOOCV can potentially have a high variance,
we run ten iterations and take the average, while also ensuring
the variance is within a reasonable threshold.

Fig. 4: Diagram showing dimensions of tensors used. Input
tensors contain thirty-three values - twenty-five metafeatures
and eight values forming a vector to represent each dataset.
The output is one value for runtime and ten values for
performance.

The process of designing the hidden layers of the ANNs,
as previously mentioned, is somewhat of an inexact science.
After a lot of testing and tweaking based on feedback and
data from trial runs, the runtime network is built with three
hidden layers of sizes 32, 24, and 8. The first two hidden layers
use a Leaky ReLU activation function. The third hidden layer
uses a sigmoid activation, preventing any negative values as
sigmoid, by its nature, produces outputs in the range (0, 1).
The performance ANN contains three hidden layers of sizes
32, 24, and 16, all using Tanh activations.

We begin manually training the networks, and after each
pass the average training loss and average testing loss are
recorded. We then use a range of values for weight decay
and learning rate and record the loss value from each. Eight

values [10−6, 10−5, 10−4, 0.001, 0.01, 0.1, 1, 10] are selected
for learning rate and five [10−4, 0.001, 0.01, 0.1, 1] for weight
decay.

We record both training loss and testing loss, even though
we expect them to be similar, given the same parameters.
Table IV shows the average loss for each set of values during
training. A darker shade of red indicates a lower average loss
(more optimal) while a lighter shade indicates a higher loss
(less optimal). The heatmap for the testing loss mirrors that
of the training loss.

TABLE IV: Average training loss when running model with
different parameters. The x-axis shows different weights ap-
plied to learning rate. The y-axis shows different weights
applied to weight decay.

1

0.1

0.01

0.001

10−4

10−6 10−5 10−4 0.001 0.01 0.1 1 10

A quick look at the heatmaps shows the optimal range for
learning decay to lie somewhere between 10−4 and 0.01 and
the optimal range for weight decay to lie between 10−4 and
0.001. As expected, the training and testing losses show little
difference. Using this information, we select a weight decay
of 0.001 and a learning rate of 0.001.

Once built, the ANNs are run on all 135 datasets using
LOOCV, and all performance and runtime outputs are recorded
and output to a text file. Rankings are calculated and then
analyzed to obtain a measure of effectiveness.

IV. RESULTS AND ANALYSIS

Here we cover the process of analyzing each dataset’s
results in aggregate. We then use this information to calculate
accuracy rates and to provide visuals.

After all numerical values are ranked, we end up with a
data structure for each dataset, shown in Table V.

TABLE V: Example of the result structure produced for a
single dataset (#8). The performance and runtime results are
ranked based on their predicted values and the actual values
obtained when run.

AA AP BI GM KM MS OP SC

Performance
Pred 8 4 7 5 6 1 3 2

Actual 8 2 4 6 7 3 1 5

Runtime
Pred 1 4 2 7 3 8 6 5

Actual 1 3 2 6 4 8 7 5



In this example we can see (in blue) that the predicted top-
performing algorithm was Mean Shift (MS), when in fact it
was actually the third-best performing. The top-performing
was OPTICS (OP). The predicted top-runtime algorithm (in
red) was Average Agglomerative (AA) and that was indeed
the actual top-runtime algorithm.

Since the goal of this project is to identify the top ranked
algorithms for each objective, we will focus on all results
in the top three. Table VI compares the predictions of top
algorithms to the ground truth results obtained from running
the algorithms. Looking at the Performance column, we see
the top performing algorithm was predicted correctly 28.9% of
the time, the top performing algorithm was predicted to be in
the top two 50.4% of the time, and the actual top performing
algorithm was predicted to be in the top three 63.7% of the
time.

TABLE VI: Accuracy predicting the top algorithms over all
datasets. Top 1 means the actual best algorithm was predicted,
top 2 means the actual best algorithm was predicted in first or
second place, etc.

Performance Runtime
Top 1 28.9% 71.1%
Top 2 50.4% 89.6%
Top 3 63.7% 93.3%

We can also examine the results on a per-rank basis. The
figures below each look at a predicted ranking and chart its
corresponding actual ranking. For example, in Figures 5, 6,
and 7 we look at the top predicted algorithm for each of
the top three rankings. For ranking #1, we can see that 39
times, the top predicted algorithm was the top actual algorithm,
29 times the top predicted algorithm was the second best
performing, and so on. We can even see that in three cases,
the top predicted performer was actually the worst performing.
We would hope the chart for ranking #1 peaks at 1, the chart
for ranking #2 peaks at 2, and so on.

Finally, we can visualize sorted by algorithm, rather than
ranking. This allows us to see if some algorithms are just
naturally better performing or faster running. Figure 8 shows
that, with respect to performance, other than Average Agglom-
erative (AA), the algorithms are fairly evenly distributed. Birch
(BI) and K-Means (KM) were the next worst performing,
while Spectral Clustering (SC) and OPTICS (OP) were the
two best. The specialized nature of Birch makes it difficult to
generalize. For the purposes of this study, we had to use the
same threshold and branching factor across all datasets.

Figure 9 tells a different story, as we can see that certain
algorithms consistently have quicker runtimes than others.
Average Agglomerative (AA) was easily the fastest running,
which may explain its poor performance. The second fastest
running, Birch (BI), was also the second worst performing. A
quick comparison of both charts shows a pretty clear inverse
relationship between performance and runtime, which makes
sense. If better results are desired, there will almost always be
an additional cost.

Fig. 5: Results attempting to predict ranking #1. The x-axis
shows the actual results and how many times each value was
predicted.
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Fig. 6: Results attempting to predict ranking #2. The x-axis
shows the actual results and how many times each value was
predicted.
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V. CONCLUSION

In this study, we have presented a method for using meta-
learning to intelligently recommend clustering algorithms.
The process of defining and calculating each meta-feature is
detailed. We also reference and use a number of clustering
performance metrics and detail how to effectively measure
runtime when training algorithms.

With respect to runtime, our meta-learning system was able
to predict the top algorithm over 70% of the time. It was
able to recommend one of the top two algorithms almost 90%



Fig. 7: Results attempting to predict ranking #3. The x-axis
shows the actual results and how many times each value was
predicted.
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Fig. 8: Difference between the predicted and actual perfor-
mance average ranking for each algorithm.
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of the time, and in over 93% of cases, the system was able
to recommend one of the top three algorithms. If we define
success as being in the top three, the system was unsuccessful
in only 6.7% of cases.

When optimizing for performance, the system was able to
identify the top algorithm almost 29% of the time and one of
the top three algorithms about 64% of the time.

In the future, we hope to do more work to decipher which
of the twenty-five metafeatures used are the most important. It
is possible that of the twenty-five, only a handful are actually

Fig. 9: Difference between the predicted and actual runtime
average ranking for each algorithm.
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relevant towards reaching our objective. Conversely, there are
more statistical measures not used here that could be tested
to see if they offer any advantage. Future work could also
include shifting the recommendation process farther back in
the AutoML chain. While we were able to get suggestions for
the algorithm to use, the work of tweaking and designing the
neural nets themselves still involved trial and error.

In summary, we have shown that the concept of intelligent
algorithm recommendation does work, which is exciting as
it has the potential to bring an end to the days of guessing
and checking randomly selected algorithms. If meta-learning
can be leveraged to automate algorithm selection, we can
maximize efficiency and accuracy at a much smaller cost than
present methods.
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